НАУЧНО-ТЕХНИЧЕСКОЕ ПРЕДПРИЯТИЕ "ТКА"

Датчик оптический цифровой "ТКА-ДОЦ" (ТУ 26.51.53-006-16796024-2020)

Руководство по эксплуатации

ЮСУК.11.0001 РЭ

Санкт – Петербург 2023 г.

1 Описание и работа изделия	3
1.1 Назначение изделия	3
1.2 Технические характеристики	3
1.3 Устройство и работа	5
1.4 Маркировка и пломбирование	7
2 Использование по назначению	7
2.1 Эксплуатационные ограничения	7
2.2 Подготовка изделия к использованию	8
2.3 Использование изделия	8
3 Техническое обслуживание	14
4 Хранение и транспортирование	14
5 Утилизация	15

Настоящее руководство по эксплуатации предназначено для ознакомления с принципом работы Датчика «ТКА-ДОЦ» (далее – датчик), особенностями его конструкции, правилами хранения и порядком работы.

Изготовитель оставляет за собой право вносить изменения непринципиального характера в конструкцию и электрическую схему изделия без отражения их в руководстве по эксплуатации. В изделии могут быть установлены отдельные элементы, отличающиеся от указанных в документации, при этом метрологические и эксплуатационные характеристики прибора не ухудшаются.

1 Описание и работа изделия

1.1 Назначение изделия

Датчик предназначен для измерения (в зависимости от типа датчика) облученности, освещенности или яркости.

1.2 Технические характеристики

Метрологические параметры:

Динамический диапазон значений
измеряемой величины $1-1\ 000\ 000$
Пределы допускаемой основной относительной погрешности
измерения \pm 10,0 %
Пределы дополнительной относительной погрешности
прибора при измерении оптических величин при изменении
температуры воздуха на каждые 10 °C в диапазонах
от -30 до +15 °C и св. +25 до +60 °C \pm 3,0 %
Размерность измеряемой величины в зависимости от
типа датчика:
– ОблученностьмВт/м ²
Освещенностьлк
 Яркость кд/м²
Длительность единичного измерения2 мс

Угловая характеристика чувствительности датчика в зависимости от типа:

$-$ Облученность по уровню 0,5, не менее \pm 15°
 Освещенность косинусная
— Яркость по уровню 0,5, не менее $\pm 20^{\circ}$
Электрические параметры:
Напряжение питания
Рабочее напряжение интерфейса UART3 В
Потребляемый ток*, не более
Эксплуатационные параметры:
Габаритные размеры Ø40х30 мм
Длина кабеля1,2 м
Тип разъема 4-х контактный miniXLR
Масса, не более100 г
Время непрерывной работы прибора, не менее 24 ч
Рабочий диапазон температур окружающего
воздуха без образования конденсата30+60 °C
Допустимая относительная влажность воздуха при
температуре окружающего воздуха 25 °C, не более98 %
Атмосферное давление80110 кПа
Наработка на отказ, не менее 2000 ч

У конкретного изделия параметры могут быть изменены по согласованию с заказчиком и отражены в паспорте изделия.

^{*} При напряжении питания 3,3 В.

1.3 Устройство и работа

Конструктивно датчик выполнен в виде единого блока с кабелем для осуществления подключения питания и обмена данными.

Принцип работы датчик заключается в преобразовании фотоприёмным устройством оптического излучения в электрический сигнал с последующей передачей результата измерения по проводному интерфейсу в виде цифрового кода.

В корпусе датчика по диаметру сделана проточка шириной 2,4 мм (Рис.1) для крепления датчика на штативное крепление (поставляется в комплекте ЮСУК.10.0002 БОИ «ТКА-УФД») или на оснастке, имеющейся у потребителя.

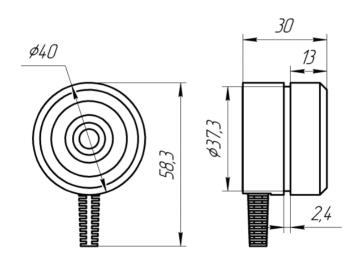


Рис.1 – Внешний вид и габаритные размеры датчика

Для работы датчик подключение может производиться к Блоку обработки информации (ЮСУК.10.0002 БОИ «ТКА-УФД», поставляется отдельно) или любому устройству, имеющему соответствующие характеристики.

Подключение осуществляется несъемным кабелем с 4-х контактным разъемом miniXLR. Расположение контактов представлено на Рис.2.

Обмен данными производится по протоколу UART.

Параметры подключения:

Бодрейт (Baud rate)	115200
Биты данных (Data bits)	8
Стоп-биты (Stop bits)	1
Четность (Parity)	нет (none)

Рис.2 – Разъем и обозначение контактов (вид спереди)

1.4 Маркировка и пломбирование

На задней крышке нанесена информация о типе датчика, заводской номер и пломба предприятия-изготовителя (Рис.3).

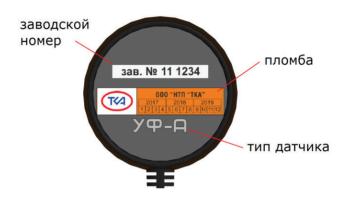


Рис.3 – Вид сзади

2 Использование по назначению

2.1 Эксплуатационные ограничения

Эксплуатация датчика допускается в следующих условиях: Температура окружающего воздуха:

20 \pm 5 °C
30+60 °C
туре
98 %
80110 кПа

Не допускается погружать датчик в жидкость.

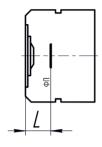
2.2 Полготовка излелия к использованию

До начала работы с датчиком потребитель должен внимательно ознакомиться с его назначением, техническими данными и характеристиками, устройством и принципом действия, а так же с методикой проведения измерений.

Эксплуатация датчика допускается только в рабочих условиях, указанных в п.2.1.

В случае проведения измерений в помещениях, температура которых значительно (более чем на $10~^{\circ}$ C) отличается от температуры, при которой ранее находился датчик, необходимо выдержать его в данном помещении в течение 15~минут.

Для начала работы подключите датчик к БОИ, персональному компьютеру через переходник USB-UART либо другому устройству, имеющему соответствующие параметры подключения.


2.3 Использование изделия

Размещение датчика при проведении измерений зависит от типа датчика.

Датчик облученности

Расположите датчик фотоприемной плоскостью в точке измерения по направлению к измеряемому объекту. Фотоприемная плоскость зависит от спектрального диапазона датчика облученности (Рис.4). Проследите за тем, чтобы на входную диафрагму не падала тень от оператора, производящего измерения, а также тень от временно находящихся посторонних предметов.

Угловой размер измеряемого источника излучения, видимый из точки измерения, не должен превышать $\pm 10^{\circ}$.

L, MM	тип датчика
13	УФ-А
15,4	УФ-В
11	<i>ΥΦ-</i> [
7,6	УФ−(A+B)
14,5	ИК-1
12	ЯРК

Рис.4 – Положение фотоприемной плоскости в зависимости спектрального диапазона датчика

Датчик освещенности

Фотоприемной плоскостью является внешняя грань рассеивателя, при этом она совпадает с внешней гранью корпуса датчика. Конструкция корпуса обеспечивает угловую косинусную характеристику чувствительности.

Для проведения измерений расположите датчик фотоприемной плоскостью в точке измерения. Убедитесь в равномерности освещенности на входном окне датчика.

Датчик яркости

Данный вид датчика предназначен для измерения яркости протяженных самосветящихся объектов накладным методом.

Для измерения расположите датчик вплотную к объекту измерения без зазоров. При этом яркость объекта в поле зрения датчика должна быть равномерной.

Протокол обмена данными

После подключения датчика команды посылаются в виде ASCII-символов. В конце каждой команды необходимо добавлять символы возврата каретки и конца строки CR+LF ('\r' и '\n' без кавычек, шестнадцатеричные коды 0x0D и 0x0A соответственно).

Список команд:

«#01» — возвращает серийный номер датчика

«#02» — начало мониторинга. Ответ в 4-х байтовом формате

«#02.» - остановка мониторинга

«#03» — возвращает результат единичного измерения (длительностью 2 мс). Ответ в 4-х байтовом формате

«#04» – дата калибровки

«#05» - тип датчика

«#11» – режим работы №2

«#12=[gain time],[dt],[N]?» – возвращает [N] (не более 2000) значений с шагом [dt] микросекунд (от 15 до 65536 мкс), подбирая усиление в течение [gain time] миллисекунд (от 10 до 6553 мс). Пояснение на Рис.6. Если [gain time] указан со знаком '!' (например «#12=!5,15,15?), то измерение проводится при фиксированном уровне усиления без автоподбора (указывается номер усиления от 0 до 15, где 0 – самое слабое усиление, для измерения больших интенсивностей). В ответе указываются измерений (номер усиления автоматическое/ фиксированное, амплитуда измеренного сигнала в процентах от максимально возможного для данного усиления и общее время измерений) и непосредственно результат. Ответ в текстовом формате.

«#13» — возвращает результат единичного измерения (длительностью 500 мс). Ответ в 4-х байтовом формате.

«#21=[gain_time],[measure_time]?» - единичное измерение с указанным временем подбора усиления ([gain_time]) и временем измерения ([measure_time]). [gain_time] и [measure_time] в миллисекундах, максимум 6553 мс. Результатом измерения является коэффициент пульсации (осциллографический метод по ГОСТ 33393-2015, прил. А), умноженный на 100. Ответ в 4-х байтовом формате.

«#23=[gain_time],[measure_time]?» — аналогично команде **#21**, но возвращает усредненное за время (**[measure_time]**) значение. Ответ в 4-х байтовом формате.

«#68» - версия прошивки

Примечание: команды, имеющие аргументы («#12», «#21», «#23»), при отправке с аргументами и без знака '?' в конце строки устанавливают параметры без запуска измерения. При этом параметры сохраняются в оперативную память, а повторная отправка команды без аргументов (например «#12») запускает измерение с сохраненными параметрами. Отправка полной команды с аргументами и знаком '?' запускает измерение с указанными параметрами, но не сохраняет их для последующих измерений. Команда без аргументов со знаком '?' возвращает установленные параметры без запуска измерения

Серийный номер возвращается в виде 7 символов + символ $'\n^*$ (конец строки).

Пример UART-посылки для получения серийного номера:

«#01\r\n» Hex [23] [30] [31] [0D] [0A] .

Пример ответа на команду **«#01**» в шестнадцатеричном и символьном формате:

Hex [31] [31] [20] [39] [39] [39] [39] [0A] Char [1] [1] [] [9] [9] [9] [9] [\n]

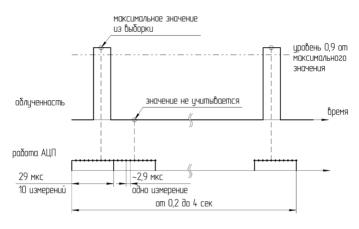


Рис.5 – Режим работы №2

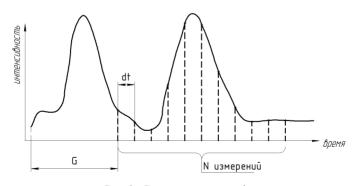


Рис.6 – Режим осциллографа

Дата калибровки возвращается в формате «**ДД ММ ГГГГ**».

Соответствие типа датчика и ответа по команде «#05»:

 $\langle\langle \mathbf{0}\rangle\rangle - \mathbf{V}\Phi - \mathbf{C};$

 $(1) - y\Phi - A + B$;

 $\langle \langle 2 \rangle \rangle - V\Phi - A;$

 $\langle \langle 3 \rangle \rangle - V\Phi - B;$

«4» - Освещенность;

«**5**» – Яркость;

«**6**» – ИК-1.

В режиме мониторинга датчик непрерывно посылает результаты измерений, пока не получит команду остановки мониторинга либо не будет отключено питание.

При измерении ответ возвращается в виде 4 байт результата измерения, дополненный символом '\n'. Результат измерений представлен 4 байтным unsigned int числом, умноженным на 100.

Пример ответа от датчика облученности в шестнадцатерином и десятичном формате:

Последний байт — символ конца строки и для расчета не используется.

Расчет:

$$E = [0] *256^3 + [53] *256^2 + [88] *256 + [109] = 3496045$$

Далее делим результат на 100 и получаем результат в размерности, соответствующей типу датчика (например, облученности в мВт/м²):

$$E = 34960.45 \text{ MBT/M}^2$$

Режим работы №2

Данный режим предназначен для измерения пиковой облученности коротких периодических импульсов длительностью от 5 мкс. В данном режиме датчик производит 8333 цикла с периодом 29 мкс по 10 единичных измерений. В каждом цикле определяется максимальное значение $E_{\rm max}$. В первых циклах идет подбор оптимального усиления, затем идет непосредственное измерение. Результат измерения — среднее арифметическое из всех значений $E_{\rm max}$, удовлетворяющих условию $E_{\rm max} \ge E_{\rm max0} \cdot 0,9$, где $E_{\rm max0}$ — максимальное измеренное значение из всех циклов. Значения меньше 0,9 от максимального не учитываются при усреднении.

При значительном изменении параметров измеряемого датчиком излучения время одного измерения может достигать 4 с. Это обусловлено работой алгоритма автоподстройки усиления. Для корректного измерения пиковое значение облученности должно быть постоянным, а импульсы должны продолжаться в течение всего времени измерения.

3 Техническое обслуживание

В случае загрязнения стёкол их следует промыть ватой или чистой тряпочкой, слегка смоченной спиртом.

Не реже одного раза в год следует производить поверку (калибровку) датчика, при этом дата и место поверки (калибровки) должны быть проставлены в паспорте датчика. Очередная поверка (калибровка) производится только при наличии паспорта.

Калибровка датчика осуществляется в соответствии с ТУ 26.51.53-006-16796024-2020.

4 Хранение и транспортирование

Транспортирование изделия осуществляется в упаковке Изготовителя всеми видами закрытого транспорта, а также самолётами в отапливаемых герметизированных отсеках при температуре от -50 до +50 °C и относительной влажности не более 95 ± 3 % при температуре 35 ± 5 °C.

Табл.1 Транспортные характеристики изделия

Габаритные размеры транспортной тары	165х115х52 мм
Масса брутто, не более	0,2 кг

Хранение изделия должно осуществляться в упаковке Изготовителя в условиях группы Л по ГОСТ 15150-69. В окружающем воздухе при транспортировании изделия не должно содержаться кислотных, щелочных и других агрессивных примесей, вызывающих коррозию.

5 Утилизация

Изделие не содержит веществ, представляющих опасность для жизни, здоровья людей и окружающей среды.

Утилизация производится предприятием-изготовителем.