НАУЧНО-ТЕХНИЧЕСКОЕ ПРЕДПРИЯТИЕ "ТКА"

ПРИБОР КОМБИНИРОВАННЫЙ "ТКА-ПКМ"(23)

Измеритель температуры и влажности + вычисление температур влажного термометра и точки росы

(ТУ 4215-003-16796024-16 с изм.2)

Руководство по эксплуатации

ЮСУК.23.0001 РЭ

Санкт – Петербург 2025 г.

"ТКА-ПКМ"(23)

комплектация прибора комбинированного серии "ТКА-ПКМ"
 с установленным по требованию заказчика данным числом и составом измеряемых параметров.

Внимание! Изготовитель оставляет за собой право вносить изменения непринципиального характера в конструкцию и электрическую схему прибора комбинированного "ТКА-ПКМ" (23) (далее по тексту — "прибор") без отражения их в руководстве по эксплуатации. В приборе могут быть установлены отдельные элементы, отличающиеся от указанных в документации, при этом метрологические и эксплуатационные характеристики прибора не ухудшаются.

Поверка прибора осуществляется в соответствии с Методикой поверки МП-242-1969-2025, утверждённой ФГУП "ВНИИМ им. Д.И. Менделеева" 21 июля 2025 г.*

1 ВВЕЛЕНИЕ

Настоящее руководство по эксплуатации предназначено для ознакомления с принципом работы прибора, особенностями конструкции, правилами хранения и порядком работы.

2 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Прибор предназначен для измерения следующих параметров окружающей среды:

- относительной влажности (RH, %) воздуха;
- **температуры** (t, °С) воздуха,

а также отображения справочного параметра:

- атмосферного давления (P, кПа),

и вычисляемых в режиме реального времени параметров:

- температуры влажного термометра (t в.т., °С);
- температуры точки росы (t т.р., ${}^{\circ}C$);

Область применения прибора: санитарный и технический надзор в жилых и производственных помещениях, музеях, библиотеках, архивах; аттестация рабочих мест и другие сферы деятельности.

3 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

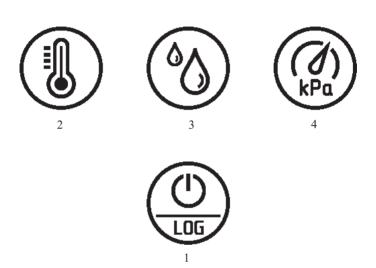
3.1 Диапазоны измерений:	
 относительной влажности, % отн. вл. 	598
$-$ температуры воздуха, ${}^{\circ}C$	-30+60
– атмосферного давления, $\kappa \Pi a$	30110
3.2 Пределы допускаемой основной абсолютной	
погрешности измерений при температуре воздуха	
в зоне измерения (20 ± 5) °C:	
– относительной влажности, % отн. вл.	± 3,0
- температур воздуха, ° C	$\pm 0,2$
атмосферного давления, кПа	$\pm 0,15$
3.3 Пределы допускаемой дополнительной абсолютно	рй
погрешности измерения относительной влажности	И
при изменении температуры на каждые 10°C	
в диапазонах от $+10$ до $+15~^{\circ}C$	
и св. $+25$ до $+60$ °C, % отн. вл	± 3,0
3.4 Пределы допускаемой дополнительной абсолютно	рй
погрешности измерения температуры воздуха, °С,	
при температуре: от -30 до - $10^{\circ}C$ включ.	$\pm 0,3$
св 10 до + 15 ° C включ.	$\pm 0,1$
св. $+25$ до $+45$ ° C включ.	$\pm 0,1$
св. +45 до +60° <i>C</i>	$\pm 0,3$
3.5 Диапазоны показаний расчетных параметров:	
- температура влажного термометра, ° C	-10+60
– температура точки росы, ${}^{\circ}C$	-55+60
3.6 Размер памяти, измерений	262 144
3.7 Интервалы записи в память: $5 c / 10 c / 30$	
5 мин / 15 мин	
1 y / 5 y /	10 ч / 24 ч
3.8 Источник питания (2 батареи, тип "AA"), <i>В</i>	3
3.9 Ток, потребляемый прибором от источника	
питания, $M \kappa A$, не более	50
3.10 Время непрерывной работы прибора, мес., не мег	
3.11 Срок службы, лет	7

3.12 Наработка на отказ, <i>ч</i>3.13 Масса прибора, <i>кг</i>, не более3.14 Габаритные размеры прибора	2 000 0,25
 блок обработки информации измерительная головка 3.15 Эксплуатационные параметры: 	135x73x27 Ø15x135
 3.15.1 Температура окружающего воздуха, °C: нормальные рабочие условия рабочий диапазон температур 3.15.2 Относительная влажность воздуха при темперокружающего воздуха 25 °C, %, не более 3.15.3 Атмосферное давление, кПа 	20 ± 5 -30+60 parype 98 80110
4 КОМПЛЕКТ ПОСТАВКИ Прибор комбинированный "ТКА-ПКМ"(23)	2 шт. 1 экз. 1 экз. 1 ыт. 1 шт. 1 шт. 1 шт. 1 шт. 1 шт.

5 УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

5.1 Приборы комбинированные выпускаются в компактном портативном исполнении. Конструктивно прибор состоит из двух функциональных блоков: измерительной головки (ИГ) и блока обработки информации (БОИ) (Рис.1).

Конструкция прибора позволяет подключать измерительную головку к БОИ как напрямую, так и через кабель-удлинитель.


На лицевой стороне БОИ расположены: жидкокристаллический индикатор и четыре кнопки управления прибором.

На обратной стороне БОИ расположена крышка батарейного

Рис.1 – Внешний вид прибора "ТКА-ПКМ"(23)

- 1 Блок обработки информации
- 2 Измерительная головка
- 3 Разъём для подключения к ПК

Puc.2 - Кнопки управления.

1 – кнопка включения/выключения прибора и запуска/ останова регистратора данных; 2, 3, 4 – кнопки выбора режима измерения температуры, относительной влажности и атмосферного давления соответственно.

отсека.

Разъём (3, Рис.1) предназначен для связи с ПК.

Для крепления прибора на стене в комплект поставки входит настенный держатель.

- 5.2 Заводской номер и год выпуска прибора указываются на лицевой стороне БОИ
- 5.3 Пломба предприятия—изготовителя устанавливается на обратной стороне БОИ.
- 5.4 Принцип работы прибора заключается в преобразовании датчиками параметров микроклимата в электрические сигналы с обработкой и цифровой индикацией полученных числовых значений параметров на дисплее прибора.
- 5.5 Включение прибора и его отключение производится однократным нажатием кнопки ВКЛ./ВЫКЛ. (1, Рис.2).
- 5.6 Для определения желаемого параметра достаточно поместить измерительную головку в зону измерений и считать с жидкокристаллического дисплея прибора измеренное значение (а–в, Рис.3).
- 5.7 В приборе реализованы два режима измерения и отображения информации режим быстрых измерений (одно измерение в секунду) и режим циклического переключения (каждые 30 секунд) между измеряемыми параметрами (в данном режиме производиться только одно измерение за переключение).

По умолчанию, после включения прибора запускается циклический режим работы. Для перехода в режим быстрых измерений достаточно выбрать желаемый измеряемый параметр нажатием на соответствующую кнопку (2–4, Рис.2). При этом на экране прибора начнет мигать размерность измеряемого параметра, что символизирует о том, что в данный момент запущен режим быстрых измерений. Для выхода из данного режима необходимо зажать на две секунды кнопку (2–4, Рис.2), соответствующую текущему измеряемому параметру. Мигание размерности прекратится, и прибор перейдет в циклический режим. Прибор, находясь в режиме быстрых измерений и если не

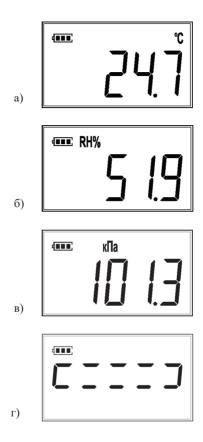


Рис.3 – Индикация на ЖК-дисплее режимов измерения: а – режим измерения температуры; б – режим измерения относительной влажности; в – режим измерения атмосферного давления; г – отсутствие связи с зондом.

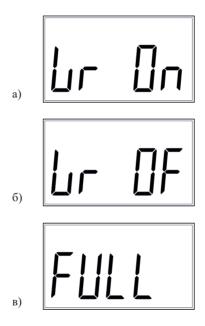


Рис. 4 — Индикация на ЖК-дисплее состояния регистратора данных: а — регистратор данных включен; б — регистратор данных выключен; в — переполнение памяти регистратора данных.

было нажатий на кнопки, автоматически, через 60 минут, перейдет на циклический режим измерения и отображения данных.

5.8 При необходимости прибор может работать как регистратор данных (даталоггер), сохраняя результаты измерений во внутреннюю память с заданным интервалом.

Запуск регистратора данных осуществляется через специальное меню, войти в которое можно, зажав у включенного прибора на несколько секунд кнопку LOG (1, Puc.2). На экран прибора будет выведено текущее состояние даталогтера (Puc.4). Если регистратор включен, то на экране прибора отобразится символ "Lr_On" (а, Puc.4); если выключен — "Lr_OF" (б, Puc.4). Если внутренняя память прибора полностью заполнена, то на экране прибора отобразится символ "FULL" (в, Puc.4). Одиночное нажатие на кнопку LOG приводит к смене текущего состояния регистратора данных. Чтобы выйти из меню даталогтера, необходимо зажать на несколько секунд кнопку LOG. Прибор вернется в режим работы, предшествующий переходу в меню.

- 5.9 В комплект поставки входит носитель информации с программным обеспечением, с помощью которого можно настроить регистратор данных и считать из внутренней памяти прибора накопленные данные.
- 5.10 Конструкция прибора позволяет отключать и подключать измерительную головку к работающему прибору. При отсутствии ИГ у включенного прибора на экран прибора выводится соответствующий символ (г, Рис.3), выводимый до тех пор, пока ИГ не будет подключена.

6 ПОРЯДОК РАБОТЫ

6.1 ПОДГОТОВКА К РАБОТЕ

- 6.1.1 Перед началом работы извлеките прибор из упаковки, произведите внешний осмотр с целью проверки:
 - комплектности прибора,
 - надёжности крепления разъёмов, органов управления и настройки,

- состояния декоративных и технологических покрытий,
- целостности изоляции электрических кабелей,
- отсутствия видимых механических повреждений на корпусе БОИ и измерительной головки.

До начала работы с прибором потребитель должен внимательно ознакомиться с назначением прибора, его техническими данными и характеристиками, устройством и принципом действия, а также с методикой проведения измерений.

- 6.1.2 Эксплуатация прибора допускается только в рабочих условиях, указанных в п.3.15.
- 6.1.3 Перед вводом прибора в эксплуатацию установите элементы питания (если этого не было сделано на предприятии-изготовителе), входящий в комплект поставки. Для этого необходимо открыть крышку батарейного отсека на нижней накладке корпуса БОИ и установить элементы питания.
- 6.1.4 При резком изменении температуры и влажности окружающего воздуха необходимо выдержать прибор во времени для установления тепло-влажного равновесия между измерительной головкой и окружающей средой.

6.2 МЕТОДИКА ИЗМЕРЕНИЙ

- 6.2.1 Включение прибора
- 6.2.1.1 Включите прибор однократным нажатием на кнопку включения прибора (1, Рис.2).

Перед началом работы убедитесь в работоспособности элементов питания (батарей). Если после включения прибора на дисплее появится мигающий символ разряда батареи (—), нужно заменить батареи на новые.

6.2.1.2 Прибор предназначен для прямых измерений.

Прямые измерения не требуют утверждённой методики выполнения измерений и проводятся по эксплуатационной документации на применяемое средство измерений (в данном случае по Руководству по эксплуатации). «Методики (методы) измерений, предназначенные для выполнения прямых измерений, вносятся в эксплуатационную документацию на средства

измерений и аттестации не подлежат. Подтверждение соответствия этих методик измерений метрологическим требованиям к измерениям осуществляется в процессе утверждения типов средств измерений...» (Из ФЗ № 102-ФЗ «Об обеспечении единства измерений» ч. 2 статьи 5).

6.2.1.3 Не допускается попадание капель влаги в измерительную полость зонда, не допускается погружать зонд в жидкость.

В случае конденсации паров воды на поверхности датчиков показания прибора не нормируются.

- 6.2.2 Режимы измерения температуры и относительной влажности воздуха
- 6.2.2.1 Снимите защитный колпачок с оголовка измерительной головки. Поместите зонд в контрольную точку (КТ) измерения температуры и относительной влажности воздуха, в случае необходимости воспользуйтесь удлинителем.
- 6.2.2.2 Переведите прибор в соответствующий режим измерения.
- 6.2.2.3 Считайте, после установления отображаемых показаний, с цифрового индикатора измеренное значение температуры или относительной влажности воздуха.

Если показания прибора выходят за границы установленного измеряемого диапазона, в этом случае они не нормируются.

- 6.2.3 Режим отображения температуры влажного термометра или температуры точки росы
- 6.2.3.1 Снимите защитный колпачок с оголовка измерительной головки. Поместите зонд в КТ измерения, в случае необходимости воспользуйтесь удлинителем.
- 6.2.3.2 Переведите прибор в режим измерения температуры. Повторным нажатием на кнопку выбора режима измерения температуры переключите прибор в режимы отображения температуры влажного термометра или температуры точки росы. При этом загорится соответствующий индикатор (t вт или t тр) над кнопкой выбора режима измерения.
 - 6.2.3.3 Считайте, после установления отображаемых показаний,

- с цифрового индикатора расчетное значение температуры влажного термометра или температуры точки росы.
 - 6.2.4 Режим отображения атмосферного давления
- 6.2.4.1 Снимите защитный колпачок с оголовка измерительной головки. Поместите зонд в КТ измерения, в случае необходимости воспользуйтесь удлинителем.
- 6.2.4.2 Переведите прибор в режим отображения атмосферного давления.
- 6.2.4.3 Считайте, после установления отображаемых показаний, с цифрового индикатора расчетное значение атмосферного давления.
- 6.2.5 Если во время работы прибора появится символ разряда батарей (), замените батареи на новые.
 - 6.2.6 Выключение прибора.

По окончании измерений выключите прибор и наденьте колпачок на оголовок измерительной головки. Выключенный прибор необходимо уложить в индивидуальную потребительскую тару для хранения и дополнительно в транспортную тару для транспортировки.

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 7.1 Во избежание повреждения датчиков запрещается разбирать измерительный зонд.
- 7.2 Не допускается попадание капель влаги в измерительную полость зонда, не допускается погружать зонд в жидкость.
- 7.3 Не реже одного раза в год следует производить поверку (калибровку) прибора, при этом дата и место поверки (калибровки) должны быть проставлены в паспорте прибора.
- 7.4 Очередная поверка (калибровка) производится только при наличии паспорта.

8 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

8.1 Транспортирование приборов осуществляется в упаковке Изготовителя всеми видами закрытого транспорта, а также самолётами в отапливаемых герметизированных отсеках при

температуре от -50 до +50 °C и относительной влажности не более 95 \pm 3 % при температуре 35 \pm 5 °C.

- $8.2\,$ Допускается однократное транспортирование приборов в индивидуальной потребительской таре (сумке) в тех же условиях, которые указаны в п.8.1.
- 8.3 Хранение приборов должно осуществляться в упаковке Изготовителя в условиях группы Л по ГОСТ 15150-69.
- 8.4 В окружающем воздухе при транспортировании приборов не должно содержаться кислотных, щелочных и других агрессивных примесей, вызывающих коррозию.

^{*} Методика поверки размещена на нашем сайте www.tkaspb.ru